

PBL-003-1271003

Seat No.

M. Sc. (ECI) (Sem. I) Examination

November / December - 2018

Fundamentals of Digital Electronics: Paper - 3

Faculty Code: 003

Subject Code: 1271003

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

- 1 Answer the following: (any 7 out of 10) 14
 - (1) Convert $(110101)_2$ into Decimal.
 - (2) Convert (172.89)₁₀ into Hexadecmial.
 - (3) Convert (8AB2)₁₆ into Octal Number system.
 - (4) Convert (FCA3)₁₆ into Gray code.
 - (5) Classify Digital logic family based on fabrication.
 - (6) Explain 2 input EX-NOR gate with its symbol and truth table.
 - (7) Explain commutative law for Boolean expression.
 - (8) Write the complement form for the Boolean expression $\overline{A}.B + \overline{A}.C + A.C$
 - (9) Find the 9's and 10's complement of $(8324.3)_{10}$.
 - (10) Find the 1's and 2's complement of (1101010)₂.
- 2 Answer the following: (any 2 out of 3) 14
 - (1) Explain BASIC gates with symbols, Boolean expressions and Truth tables.
 - (2) List the advantages of Digital Integrated Circuits (ICs) 7
 - (3) For the Boolean expression
 F(A,B,C) = ABC + ABC
 Write its minterm and maxterm and reduce the expression using various laws of Boolean algebra and draw its circuit.

1

PBL-003-1271003]

[Contd...

7

3	\mathbf{Answer}	the	following	:

- (a) Do the arithmetic operation using 2's complement method.
 - $(1) \quad (+32)_{10} \ +(-12)_{10}$
 - $(2) \quad (-20)_{10} (+30)_{10}$
- (b) Divide $(110111)_2$ by $(1010)_2$ using repeated right shift and subtract algorithm. Explain each step in detail.

OR.

3 Answer the following:

14

14

- (a) A mobile shop has seven segment display which shows "OPPO 5L8"
 - Generate code for each display.

(Consider common cathode type display)

- (b) Test the Hamming code sequence 1111011. AND show how to correct it, if there is an error.
- 4 Answer the following:

14

- (a) Explain NOR gate as a Universal gate.
- (b) Explain Half adder circuit with truth table, expression and Logical circuit.
- 5 Answer the following: (any 2 out of 4)

14

- (1) Explain DeMorgan's theorem in detail. Write formulas, symbols and example.
- (2) Perform following in 8421 BCD using Ex-3 code.
 - (1) 138 + 234
 - (2) 75 39
- (3) Simplify following Boolean expression using K-Map. $f(A, B, C, D) = \sum (0, 3, 4, 7, 8, 11, 12, 15)$ AND draw

the logic circuit.

- (4) Write the name of Boolean Theorem
 - $(1) \quad X + X = X$
 - $(2) \quad X + Y = Y + X$
 - (3) (X')' = X
 - (4) $(X + Y)' = X' \cdot Y'$
 - (5) X + X' = 1
 - (6) X + (Y + Z) = Y + (Z + X) = Z + (X + Y)
 - $(7) \quad X + X \cdot Y = X$